New AWS Scholarship Program Helps Underrepresented and Underserved Students Prep for Careers in AI and ML

As a woman working in information technology (IT) for many years, it has always been close to my heart to challenge long-standing gender stereotypes and inspire more young learners to consider a career in tech. With artificial intelligence (AI) and machine learning (ML) defining the future of technology, this future also depends on diverse representation. The World Economic Forum estimates that technological advances and automation will create 97 million new technology jobs by 2025, including in the field of AI and ML. Yet, according to their research, women make up just 32% of AI jobs globally. The Pew Research Center found that Black and Hispanic workers in the U.S. comprise just 9% and 8% of workers in the science, technology,…

Now in Preview – Amazon SageMaker Studio Lab, a Free Service to Learn and Experiment with ML

Our mission at AWS is to make machine learning (ML) more accessible. Through many conversations over the past years, I learned about barriers that many ML beginners face. Existing ML environments are often too complex for beginners, or too limited to support modern ML experimentation. Beginners want to quickly start learning and not worry about spinning up infrastructure, configuring services, or implementing billing alarms to avoid going over budget. This emphasizes another barrier for many people: the need to provide billing and credit card information at sign-up. What if you could have a predictable and controlled environment for hosting your Jupyter notebooks in which you can’t accidentally run up a big bill? One that doesn’t require billing and credit card…